martes, 15 de marzo de 2011

El polímero primordial

En 1951, una nueva hipótesis sobre el origen de la vida fue propuesta, con escaso eco en la comunidad científica, por el físico inglés John Bernal. Según esta teoría, una entidad molecular podría definirse como viva si poseyera dos propiedades: capacidad de acumular información genética y capacidad de producir copias de su propia estructura. El metabolismo de este primer ser vivo —el "polímero primordial"— consistiría únicamente en esa capacidad de generar, autocatalíticamente, copias de sí mismo. (Un polímero es una molécula formada por la unión de muchas moléculas más pequeñas llamadas monómeros.) Los errores producidos durante la autoduplicación podrían dar lugar a variedades con mayor resistencia a la destrucción o con mayor capacidad de reproducción y la selección natural —a nivel molecular— favorecería a estas variedades por su capacidad de adaptarse mejor al ambiente. Asi, la hipótesis de Bernal predecía la aparición de vida en forma de "polímeros autorreplicables", que habrían surgido antes de la aparición de microorganismos separados del medio externo por una membrana. ¿Cuáles podrían ser estos polímeros? Los candidatos naturales eran las proteínas (cadenas de moléculas pequeñas, los aminoácidos, ordenados en una secuencia determinada) o los ácidos nucleicos, el ARN y el ADN 



Sin embargo, es difícil asignarle a cualquiera de ellos la función de polímero primordial. Las proteínas actúan como excelentes catalizadores, pero son incapaces de acumular información genética, ya que una proteína no puede guardar la información necesaria para la síntesis de otra. Por su parte los ácidos nucleicos (ARN y ADN) almacenan información genética, pero necesitan para duplicarse de enzimas, vale decir de proteínas con actividad catalítica. Entonces, ¿cuál de estos polímeros habría surgido primero en el planeta, los ácidos nucleicos o las proteínas? Hasta el comienzo de la década del '80 este problema (del tipo "el huevo y la gallina") no parecía tener solución. En los últimos años, sin embargo, una serie de evidencias parecieron indicar que el polímero primordial autorreplicable podría ser un ácido nucleico, más específicamente un ácido ribonucleico (ARN) y no una proteína.
Debe señalarse que el grupo del biofísico Sidney Fox, de Florida, EE.UU., cree aún ahora que las proteínas (o ciertas estructuras parecidas a ellas a las que llaman "polímeros proteinoides") podrían haber sido los polímeros primordiales. Sin embargo, este grupo ha intentado en vano probar su hipótesis estudiando, desde mediados de la década del '50, los mecanismos de polimerización de aminoácidos a altas temperaturas en medios similares al ambiente volcánico de la Tierra primitiva. Fox ha observado que, en estas condiciones, mezclas que contienen igual número de moléculas de cada uno de más de 15 aminoácidos diferentes generan una gran cantidad de polímeros proteinoides en los que se observa el predominio de algunos tipos de aminoácidos sobre el resto, índice de que la polimerización no se produce totalmente al azar. Estos experimentos, si bien fueron importantes porque los proteinoides así obtenidos tenían capacidad catalítica, han sido insuficientes hasta ahora: a pesar de que la polimerización térmica no ocurre totalmente al azar, el principio de orden que esto implica es insuficiente para conferir a los proteinoides mecanismos eficientes de acumulación y transmisión de la información genética. Por lo tanto, ya que no pueden reproducirse eficazmente, las proteínas no tienen ninguna posibilidad de constituirse en los polímeros primordiales.
En lo que se refiere al ADN, los problemas son diferentes. Como el ARN, el ADN también requiere de proteinas para autoduplicarse, de modo que en el ambiente primitivo de la Tierra, los hipotéticos ADN primordiales no podrían haber servido de molde para ser copiados sin el auxilio de enzimas. Además, los desoxirribonucleótidos (las unidades que al unirse entre sí constituyen el ADN) son producidos por los seres vivos actuales a partir de los ribonucleótidos (las unidades que al unirse entre sí constituyen el ARN), lo que indica que el ADN debe haber aparecido mucho más recientemente que el ARN en el curso de la historia evolutiva de la Tierra. Por otra parte, el ADN es más resistente que el ARN a la descomposición por hidrólisis (en el caso del ADN la hidrólisis es la separación de los desoxirribonucleótidos que lo constituyen por incorporación de agua) y esto haría más difícil el reciclaje de monómeros (desoxirribonucleótidos) a partir de los polímeros descartados por la selección natural. Los hechos enunciados sugieren que resulta poco probable que haya ocurrido una colonización del ambiente acuático primordial de la Tierra a través de moléculas autorreplicables de ADN.
Una vez que se hubo excluido a las proteínas y al ADN, se pasó a explorar la posibilidad de que el polímero primordial fuera el ARN. Los trabajos que iniciaron en los años '70 los grupos liderados por los científicos estadounidenses Thomas Cech y Sidney Altman, quienes fueron laureados por ello con el Premio Nobel en 1989, ampliaron las fronteras de la química del ARN y modificaron profundamente los conocimientos científicos acerca del origen de la vida. Cech y sus colegas verificaron, en la Universidad de Colorado, que determinadas secuencias del ARN de ciertas bacterias eran capaces de acelerar la velocidad de algunas reacciones. En otras palabras, descubrieron que el ARN podía comportarse como una enzima. Cech llegó a bautizar a su ARN con el nombre de "ribozima", es decir una enzima constituida por ácido ribonucleico.
En 1981, Cech publicó en la revista Cell la demostración de que determinada secuencia de ribonucleótidos de una forma de ARN ribosomal llamado 26S podía ser separada, en el protozoario Tetrahymena termophila, del resto de la molécula. Este tipo de proceso es conocido por los científicos como splicing del ARN. Los autores utilizaron ARN ribosomal purificado y observaron que el splicing ocurría tanto en presencia de un extracto del núcleo del protozoario, que contiene las enzimas responsables de la catálisis del splicing, como en ausencia de ese extracto y por lo tanto de estas enzimas (véase la revista Cell, volumen 27, 1981, págs. 487-499).

No hay comentarios:

Publicar un comentario